In [1]:
import requests
import pandas as pd

api_key = YOUR_API_KEY
ticker = "GOOGL"

keyword  = "TIME_SERIES_DAILY_ADJUSTED"
url = f"https://www.alphavantage.co/query?function={keyword}&symbol={ticker}&apikey={api_key}"
response = requests.get(url)

stock_data = response.json()["Time Series (Daily)"]
df_daily = pd.DataFrame.from_dict(stock_data, orient="index", dtype=float)
In [2]:
df_daily
Out[2]:
1. open 2. high 3. low 4. close 5. adjusted close 6. volume 7. dividend amount 8. split coefficient
2023-05-30 125.64 125.660 122.0000 123.67 123.67 35076658.0 0.0 1.0
2023-05-26 123.17 125.260 122.4500 124.61 124.61 35635937.0 0.0 1.0
2023-05-25 124.52 125.320 121.9600 123.48 123.48 42316986.0 0.0 1.0
2023-05-24 121.12 121.910 119.8600 120.90 120.90 34182635.0 0.0 1.0
2023-05-23 124.16 124.625 122.2104 122.56 122.56 34046251.0 0.0 1.0
... ... ... ... ... ... ... ... ...
2023-01-11 89.18 91.600 89.0100 91.52 91.52 26861969.0 0.0 1.0
2023-01-10 85.98 88.670 85.8300 88.42 88.42 30467755.0 0.0 1.0
2023-01-09 88.36 90.050 87.8600 88.02 88.02 29003901.0 0.0 1.0
2023-01-06 86.79 87.690 84.8600 87.34 87.34 41381495.0 0.0 1.0
2023-01-05 87.47 87.570 85.9000 86.20 86.20 27194375.0 0.0 1.0

100 rows × 8 columns